SR,

ILMSENS

Function Reference Manual - HAL API

HAL-API for software development with m:explore ultra-wideband sensors

lImsens GmbH
Ehrenbergstr. 11
98693 limenau
Germany

Tel: +49 3677-76130-30
Fax: +49 3677-76130-39
Web: www.ilmsens.com
Email: hal-api@ilmsens.com

i CONTENTS

Contents
1 Function Reference Manual - HAL API 2
1.1 Introduction e 2
1.2 Copyright and Disclaimer e 2
1.3 Furtherdocumentation L 2
1.4 Third party software e 3
1.5 Thirdparty tools 3
1.6 Contactlimsens e 4
2 Measurement Data Format 5
2.1 Dataformatofraw measureddata o 5
2.2 Calculating the output-buffersize 5
2.3 Layoutexample of outputbuffer 5
3 Module Index 7
3.1 Modules e 7
4 Data Structure Index 8
4.1 DataStructures e 8
5 File Index 9
5.1 FileList 9
6 Module Documentation 10
6.1 limsens Error Codes e 10
6.2 Library initialization/deinitialization o 11
6.3 Library versionandrevision L 12
6.4 Diagnosticinterface 13
6.5 Devicehandling. e e 14
6.6 Device ID & properties e e 15
6.7 Device configuration e 17
6.8 Measurement configuration 19
6.9 Measurementrun. e e 22
6.10 Raw measured dataretrieval 24
6.11 Low-level access to sensor registers & memory L 27

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

CONTENTS 1

7 Data Structure Documentation 30
7.1 ilmsens_hal_ModConfig Struct Reference 30
7.2 ilmsens_hal_Modinfo Struct Reference 30
7.3 ilmsens_hal_Version Struct Reference 31

8 File Documentation 32
8.1 ilmsens_error.h File Reference 32
8.2 ilmsens hal.hFileReference 32
8.3 ilmsens_hal defn.h File Reference 34
8.4 ilmsens_hal_types.h File Reference 34
8.5 ilmsens_hal version.h File Reference 35

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

2 CONTENTS

1 Function Reference Manual - HAL API

HAL-API for software development with m:explore ultra-wideband sensors

1.1 Introduction

As a service to our customers who want to integrate lImsens UWB sensors into their software environ-
ment, limsens offers a hardware abstraction layer (HAL) application programming interface (API) for
the m:explore ultra-wideband (UWB) sensors ("the software"). The HAL APl comes in form of a dy-
namic library working on top of the device drivers with corresponding C header files. This is the function
reference for the API.

The HAL API is available for different operating systems and allows device management, sensor con-
figuration, acquisition configuration, and performing measurements. It abstracts from device- or digital
interface-specific details as much as possible to enable portability of the application software. Future
generations of the HAL APl and limsens UWB sensors will be developed with backward compatibility in
mind. Product-specific extensions will extend the API rather than changing existing functions.

By default, the HAL API is provided as software in binary (compiled) form for many popular operating
systems. Should the provided functionality be insufficient for the customer’s purposes, please contact
limsens for other options (see below). We provide limited software support for the HAL API. To report
problems, ask for help, or suggest improvements, contact limsens (see below).

1.2 Copyright and Disclaimer

Copyright
Copyright ©2017 llimsens GmbH. All rights reserved.

THE SOFTWARE IS PROVIDED "AS I1S", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPL-
IED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYR-
IGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES
OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OU-
T OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

All product and company names in this document may be the trademarks and tradenames of their
respective owners and are hereby acknowledged.

1.3 Further documentation
This is a function reference only. limsens provides additional documentation in various guides.

+ HAL API Programming Guide

A software developer can find design and basic background information in the programming guide
to ease application development. Data format, buffer layout, and typical data processing steps are
explained as well.

* HAL API Setup Guide

The setup guide explains how to install the HAL library, the dependencies, and how to test suc-
cessful installation.

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

1.4 Third party software 3

1.4 Third party software

The HAL library makes use of great software developed by open source communities. These modules
and libraries allow us to make the HAL library available on many platforms and operating systems. We
appriciate this work very much and would like to thank the contributors of the following projects:

1.4.1 The libusb project

Copyright
Copyright ©2012-2015 libusb

We are using libusb-1.0 for communication with our sensors. The library is available on many Linux
flavours and most modern Windows platfoms (where it makes use of the built-in WinUSB drivers thus
avoiding the need for proprietary driver development).

Check out these ressources:

» Project website: http://libusb.info

+ License: check the latest link on the project website. Currently the license is the GNU TLesser
General Public License, version 2.1

1.4.2 The POCO project

Copyright
Copyright ©2006-2017 by Applied Informatics Software Engineering GmbH

POCO provides a very powerful multi-threaded framework for logging messages, errors, etc. It can be
setup in a hierarchical manner and allows fine grain control of what gets logged to where. We are using
libpocofoundation-1.7 for logs from the HAL library.

Check out these ressources:

* Project website: pocoproject.org

« License: The Boost Software License 1.0

1.5 Third party tools

The development of the HAL library is done with the following great and free tools. They help a lot in
keeping the library consitent, easy to build, and the documentation up to date. We appriciate these tools
very much and would like to thank their contributors.

Check out these tools:

+ Version control system: Git
+ Building and Packaging: cMake

» Code documentation: boxygen

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

http://libusb.info
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
https://pocoproject.org
https://pocoproject.org/license.html
https://git-scm.com/
https://cmake.org/
http://www.doxygen.org/

4 CONTENTS

1.6 Contact limsens

lImsens GmbH
Ehrenbergstr. 11

98693 limenau
Germany

Tel.: +49 3677 76130-30
Fax: +49 3677 76130-39

Email: hal-apiQilmsens.com

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

mailto:hal-api@ilmsens.com

2 Measurement Data Format 5

2 Measurement Data Format

This section briefly explains the format and buffer layout for measured data returned by the HAL API.

More detailed information can be found in the HAL APl Programming Guide.

2.1 Data format of raw measured data

The data retrieved from the sensors is returned as 32 bit integers (int) to avoid any loss of precision
while keeping the amount of data as small as possible. Besides the actual signal samples, additional
status information is contained in the output buffer. How to convert raw integers into physical units is
explained in detail in the HAL APl Programming Guide.

2.2 Calculating the output-buffer size

This section describes how to calculate the minimum size of the output buffer for retrieving measured
data for a given sensor configuration.

* In case of sensors with different configurations included in the measurement run

Buf ferSizepmin, = Z ChannelSize(i) x NumberO f Rx(i)

= Z oMLBS=order(i) s NymberO fOversampling(i) x NumberO f Ra(i)

i

+ In case of common configuration for all sensors included in the measurement run

Buf ferSizemin = NumberO fSensors x ChannelSize x NumberO f Rx

= NumberOfSensors x 2MEBS=order o NumberO fOversampling x NumberO f Rz

2.3 Layout example of output buffer

The following layout assumes a measurement with two indentically configures 9th order m:explore
Sensors.

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

Description:
Buffer offset:

CONTENTS

First sensor

B
-~ B
Rx1 samples Seq. Counter |Rx2 samples {reserved)
[0] .. [510] 511] [512] .. [1022] [1023]
Rx1 samples Seq. Counter |Rx2 samples (reserved)
[1024] .. [1534] [1535] [1536] .. [2046] [2047]
S— _

—
Second sensor

Figure 1 Buffer layout of example setup with two measuring 9th order m:explore sensors

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

3 Module Index

3 Module Index

3.1 Modules

Here is a list of all modules:

limsens Error Codes

Library initialization/deinitialization
Library version and revision
Diagnostic interface

Device handling
Device ID & properties

Device configuration

Measurement configuration

Measurement run

Raw measured data retrieval

Low-level access to sensor registers & memory

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

10
11
12
13
14
15
17
19
22
24

27

8 CONTENTS

4 Data Structure Index

4.1 Data Structures

Here are the data structures with brief descriptions:

ilmsens_hal_ModConfig
Represents the basic device configuration 30

ilmsens_hal_ModInfo
Represents the device configuration & runtime parameters and limits 30

ilmsens_hal_Version
Represents the version identifier 31

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

5 File Index

5 File Index

5.1 File List

Here is a list of all documented files with brief descriptions:

ilmsens_error.h
limsens error code definitions

ilmsens_hal.h
Function definitions for Imsens HAL API

ilmsens_hal_defn.h
Macro definitions for Imsens HAL

ilmsens_hal_types.h
Type definitions for limsens HAL

ilmsens_hal_version.h
Version definitions

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

32

32

34

34

35

10 CONTENTS

6 Module Documentation

6.1 limsens Error Codes

limsens error codes provided as return values.

Enumerations

» enum ilmsens_error {
ILMSENS_SUCCESS = 0, ILMSENS_ERROR_INVALID_PARAM = -1, ILMSENS_ERROR_STA-
TE =-2, ILMSENS_ERROR_BUSY = -3,
ILMSENS_ERROR_ACCESS = -4, ILMSENS_ERROR_IO = -5, ILMSENS_ERROR_NO_MEMO-
RY = -6, ILMSENS_ERROR_AGAIN = -7,
ILMSENS_ERROR_TIMEOUT = -8, ILMSENS_ERROR_NOT_SUPPORTED = -9, ILMSENS_E-
RROR_UNKNOWN = -99 }

Common error codes.

6.1.1 Detailed Description

limsens error codes provided as return values.

6.1.2 Enumeration Type Documentation

6.1.2.1 enum ilmsens_error
Common error codes.

Enumerator:

ILMSENS_SUCCESS No error.
ILMSENS_ERROR_INVALID_PARAM Invalid parameter.
ILMSENS_ERROR_STATE Invalid state (e.g. on reading data, when no measurement is running).

ILMSENS_ERROR_BUSY Ressource is busy.

ILMSENS_ERROR_ACCESS Access denied.

ILMSENS_ERROR_IO Input/Output error (e.g. transmission error or device disconnected).
ILMSENS_ERROR_NO_MEMORY Ressource allocation failed.

ILMSENS_ERROR_AGAIN Not enough data, try again later (e.g. when a non-blocking operation
would need to block the caller).

ILMSENS_ERROR_TIMEOUT Timeout expired.
ILMSENS_ERROR_NOT_SUPPORTED Operation not supported.
ILMSENS_ERROR_UNKNOWN Unspecified error.

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

6.2 Library initialization/deinitialization 11

6.2 Library initialization/deinitialization

Modules

* Library version and revision
+ Diagnostic interface

Functions
* int ilmsens_hal_initHAL (void)
Initializes the library.

+ void ilmsens_hal_deinitHAL (void)
Deinitializes the library.

6.2.1 Detailed Description
6.2.2 Function Documentation

6.2.2.1 intilmsens_hal_initHAL (void)
Initializes the library.
This function must be called before calling any other library function.

Returns

number of connected devices
negative error-code

6.2.2.2 void ilmsens_hal_deinitHAL (void)

Deinitializes the library.
Should be called after closing all open devices and before your application terminates. This function

always succeeds. Errors that appeared, will only be visible when calling ilmsens_hal_initHAL() again
(i.e. if the library is not unloaded but a new session is started).

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

12 CONTENTS

6.3 Library version and revision

Data Structures

« struct iimsens_hal_Version
Represents the version identifier.

Macros

+ #define ILMSENS_HAL_API_VER_MAJOR 1

major version number of HAL API
« #define ILMSENS HAL_API_ VER MINOR 1

minor version number of HAL API
 #define ILMSENS HAL_ API_VER_BUILD 1

build number of HAL API
* #define ILMSENS HAL_API_VER (ILMSENS HAL_API_VER_MAJOR % 100000 + ILMSENS_H-
AL_API_VER_MINOR x 1000 + ILMSENS_HAL_API_VER_BUILD)

single version number for preprocessors

Functions

« int ilmsens_hal_getVersion (struct iimsens_hal_Version xpVersion)
Return the HAL version.

6.3.1 Detailed Description
6.3.2 Function Documentation

6.3.2.1 intilmsens_hal_getVersion (struct ilmsens_hal_Version x pVersion)
Return the HAL version.

Parameters

\ pVersion | pointer to version information structure

Returns

ILMSENS SUCCESS on success
negative error-code

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

6.4 Diagnostic interface 13

6.4 Diagnostic interface

Macros

» #define ILMSENS_DEB_NO 0U

do not output debug/info messages
* #define ILMSENS _DEB_INFO 1U

only output errors and very important information
* #define ILMSENS DEB MORE 2U

output errors, warnings, and important information
« #define ILMSENS DEB MOST 3U

output errors, warnings, and debug information
« f#tdefine ILMSENS DEB_ALL 4U

output errors, warnings, and trace information

Functions

+ int ilmsens_hal_setDEBLevel (unsigned int pLevel)
Sets the verbosity of the diagnostics output Diagnostics are sent to std.

6.4.1 Detailed Description
6.4.2 Function Documentation

6.4.2.1 intilmsens_hal_setDEBLevel (unsigned int pLevel)

Sets the verbosity of the diagnostics output Diagnostics are sent to std.

error output by default. In case of an error, the current level is not changed.

Parameters

\ pLevel \ verbosity level from ILMSENS_DEB_NO to ILMSENS_DEB_ALL

Returns

current debug level (on success and error)

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

14 CONTENTS

6.5 Device handling

Modules

 Device ID & properties
Functions for identification and access to hardware-parameters of connected devices.

Functions

+ intilmsens_hal_openSensors (unsigned int xpDevNums, unsigned int pNum)

Allocates specified devices for a measurement session.
+ void ilmsens_hal_closeSensors (unsigned int xpDevNums, unsigned int pNum)

Releases specified devices.

6.5.1 Detailed Description
6.5.2 Function Documentation

6.5.2.1 intilmsens_hal_openSensors (unsigned int « pDevNums, unsigned int pNum)

Allocates specified devices for a measurement session.

This function must be called before doing the configuration or starting a measurement session.

Parameters

pDevNums | pointer to a first element or an array of device-indexes

pNum | number of array-elements

Returns

ILMSENS_SUCCESS on success
negative error-code

6.5.2.2 void ilmsens_hal_closeSensors (unsigned int x« pDevNums, unsigned int pNum)

Releases specified devices.

Should be called after the last function call to any of the specified devices.

Parameters

pDevNums | pointer to a first element or an array of device-indexes

pNum | number of array-elements

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

6.6 Device ID & properties 15

6.6 Device ID & properties

Functions for identification and access to hardware-parameters of connected devices.

Data Structures

« struct ilmsens_hal_ModInfo
Represents the device configuration & runtime parameters and limits.

Macros

+ #define ILMSENS_HAL_MOD_ID_BUF_SIZE 1024
maximum length buffer size for retrieving the unique ID string.

Functions

* intilmsens_hal_getModld (unsigned int pDevNum, char xplD, size_t pBufferSize)

Gets unique device-identifier.
« int ilmsens_hal_getModInfo (unsigned int pDevNum, struct ilmsens_hal_ModInfo «plnfo)

Gets device hardware-configuration.

6.6.1 Detailed Description

Functions for identification and access to hardware-parameters of connected devices.

6.6.2 Function Documentation

6.6.2.1 intilmsens_hal_getModid (unsigned int pDevNum, char x pID, size_t pBufferSize)

Gets unique device-identifier.

Parameters

pDevNum | device-index

pID | pointer to an output buffer

pBufferSize | Size of buffer pointed to by pID in bytes. Maximum ID length is given via ILMSENS-
_HAL_MOD_ID_BUF_SIZE.

Returns

number of characters written to the buffer
negative error-code

6.6.2.2 intilmsens_hal_getModinfo (unsigned int pDevNum, struct ilmsens_hal_ModInfo « pinfo)

Gets device hardware-configuration.

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

Parameters

16 CONTENTS

pDevNum

device-index

plinfo

pointer to the iimsens_hal_ModInfo structure

Returns

ILMSENS_SUCCESS on success (and populates pinfo)
negative error-code

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

6.7 Device configuration 17

6.7 Device configuration

Functions for configuring specified devices.

Data Structures

» struct ilmsens_hal_ModConfig
Represents the basic device configuration.

Macros

+ #define ILMSENS_HAL_SLAVE_SENSOR 0

setup the sensor(s) to be slave devices
« #define ILMSENS HAL MASTER_SENSOR 1

setup the sensor(s) to be master devices

Functions

+ intilmsens_hal_setupSensors (unsigned int xpDevNums, unsigned int pNum, const struct iimsens-
_hal_ModConfig «pConfig)

Performs the initial setup of specified devices.
* int ilmsens_hal_setMaster (unsigned int xpDevNums, unsigned int pNum, int pMode)
Sets master/slave operational mode.

6.7.1 Detailed Description

Functions for configuring specified devices.

6.7.2 Function Documentation

6.7.2.1 int ilmsens_hal_setupSensors (unsigned int «+ pDevNums, unsigned int pNum, const struct
ilmsens_hal_ModConfig =« pConfig)

Performs the initial setup of specified devices.

This function must be called before starting a measurement session.

Parameters

pDevNums | pointer to a first element or an array of device-indexes

pNum | number of array-elements

pConfig | pointer to configuration parameters in a ilmsens_hal_ModConfig structure

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

18 CONTENTS

Returns

ILMSENS_SUCCESS on success
negative error-code

6.7.2.2 intilmsens_hal_setMaster (unsigned int x pDevNums, unsigned int pNum, int pMode)

Sets master/slave operational mode.
Application needs to make sure, that any independent sensor is set to master mode.

For hardware-synchronized operation of multiple sensors, exactly one sensor of a connected group has
to be master the others in teh group must be configured as slaves.

Parameters

pDevNums | pointer to a first element or an array of device-indexes

pNum | number of array-elements

pMode | ILMSENS_HAL_SLAVE_SENSOR = slave | ILMSENS_HAL_MASTER_SENSOR =
master

Returns

ILMSENS_SUCCESS on success
negative error-code

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

6.8 Measurement configuration 19

6.8 Measurement configuration

Macros

. #define ILMSENS_HAL_SYNCH_OFF 0

retract digital synchronisation, i.e. sensors will be unsynch’ed
* #define ILMSENS HAL_SYNCH_ON 1

perform digital synchronisation, i.e. sensors will be synch’ed
* #define ILMSENS_HAL_TX_OFF 1

transmitter is in power down mode, i.e. output amplifier is switch off
+ #define ILMSENS_HAL_TX_ON O

transmitter is working, i.e. output amplifier is switched on

Functions

* int ilmsens_hal_setAvg (unsigned int xpDevNums, unsigned int pNum, unsigned int pAvg, un-
signed int pWaitCyc)

Sets software averages and wait cycles.
* intilmsens_hal_setMLBS (unsigned int xpDevNums, unsigned int pNum)

Resets the M-sequence generator (transmitter) of each device.

« int ilmsens_hal_setPD (unsigned int xpDevNums, unsigned int pNum, int pPD)
Controls the power-status of the transmitter.

« int ilmsens_hal_synchMS (unsigned int xpDevNums, unsigned int pNum, int pMode)
Performs digital synchronisation.

6.8.1 Detailed Description

6.8.2 Function Documentation

6.8.2.1 intilmsens_hal_setAvg (unsigned int «+ pDevNums, unsigned int pNum, unsigned int pAvg, unsigned int

pWaitCyc)

Sets software averages and wait cycles.

Software averages define the acquisition aperture duration. If wait cycles are set to 0, devices measure
in continuous mode. If wait cycles are non-zero, devices measure in snapshot mode.

Note: May only be called when no measurement is running!

Parameters

pDevNums

pointer to a first element or an array of device-indexes

pNum

number of array-elements

pAvg

number of Sw averages

pWaitCyc

number of wait cycles

Returns

ILMSENS SUCCESS on success
negative error-code

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

20 CONTENTS

6.8.2.2 intilmsens_hal_setMLBS (unsigned int « pDevNums, unsigned int pNum)

Resets the M-sequence generator (transmitter) of each device.

After digital synchronisation, the M-sequence generator (transmitter) of each device should be reset to
ensure repeatable alignment of the transmitters and receivers. The reset typically takes a few ms to
complete and cannot be used to mute the transmitter(s).

Note: May only be called when no measurement is running!

Parameters

pDevNums | pointer to a first element or an array of device-indexes

pNum | number of array-elements

Returns

ILMSENS SUCCESS on success
negative error-code

6.8.2.3 intilmsens_hal_setPD (unsigned int « pDevNums, unsigned int pNum, int pPD)

Controls the power-status of the transmitter.

Note: May only be called when no measurement is running!

Parameters

pDevNums | pointer to a first element or an array of device-indexes

pNum | number of array-elements

pPD | ILMSENS_HAL_TX_ON = power-up the transmitter | ILMSENS_HAL_TX_OFF =
power-down (mute) the transmitter

Returns

ILMSENS SUCCESS on success
negative error-code

6.8.2.4 intilmsens_hal_synchMS (unsigned int x pDevNums, unsigned int pNum, int pMode)

Performs digital synchronisation.

Must be used at least once before a measurement is started.

Parameters

pDevNums | pointer to a first element or an array of device-indexes

pNum | number of array-elements

pMode | ILMSENS_HAL_SYNCH_OFF = de-synchronise sensors (revoke) | ILMSENS_HAL-
_SYNCH_ON = trigger digital synchronisation

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

6.8 Measurement configuration

21

Returns

ILMSENS_SUCCESS on success
negative error-code

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

22 CONTENTS

6.9 Measurement run

Functions to start/stop measurements with one or more devices.

Macros

+ #define ILMSENS_HAL_RUN_OFF 0

sensor is currently not measuring
+ #define ILMSENS_HAL_RUN_RAW 1

sensor is measuring and data is not buffered by API
+ #define ILMSENS_HAL_RUN_BUF 2

sensor is measuring and data is buffered by APl in separate thread

Functions

« intilmsens_hal_measRun (unsigned int xpDevNums, unsigned int pNum, int pMode)

Starts a measurement run with specified devices.
+ int ilmsens_hal_measStop (unsigned int xpDevNums, unsigned int pNum)

Stops running measurement.

6.9.1 Detailed Description

Functions to start/stop measurements with one or more devices. The library supports two modes of
operation for transfering measured data from the device-buffer memory to the host-system memory
(HAL or application).

* In case the measurement session was started in the raw mode, measured data is transferred
from the device to the host-system memory whenever a complete measurement is available and
the function ilmsens_hal_measRdy() is called by the user application. This way the data transfer
is performed synchronously with the user application’s thread. However, the user application must
ensure fast enough polling of the sensor to prevent ring buffer overflow by itself

* In case the measurement session is started in buffered mode, a separate thread is created by
the library. This thread implements periodic polling of the devices’ ring-buffer status and transfer of
measured data to the host". Therefore, the data transfer is performed asynchronously with respect
to the progress of the user application thread. This way high jitter in processing latency will not
cause a discontinuity in the measurement progress and revent potential overflow of the devices’
ring-buffer memory.

Note: The buffered mode is the preferred mode of operation of the library.

6.9.2 Function Documentation

6.9.2.1 intilmsens_hal_measRun (unsigned int x pDevNums, unsigned int pNum, int pMode)

Starts a measurement run with specified devices.

One measurement run may be pending at a time.

Parameters

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

6.9 Measurement run 23

pDevNums | pointer to a first element or an array of device-indexes

pNum | number of array-elements

pMode | specifies the mode of operation (ILMSENS_HAL_RUN_RAW for raw mode of oper-
ation, ILMSENS_HAL_RUN_BUF for buffered mode of operation)

Returns

ILMSENS SUCCESS on success
negative error-code

See Also

ilmsens_hal_measStop()

6.9.2.2 intilmsens_hal_measStop (unsigned int « pDevNums, unsigned int pNum)

Stops running measurement.

Parameters

pDevNums | pointer to a first element or an array of device-indexes

pNum | number of array-elements

Returns

ILMSENS_SUCCESS on success
negative error-code

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

24 CONTENTS

6.10 Raw measured data retrieval

Functions to read measured data out of internal ring-buffer.

Typedefs

* typedef int32_t iimsens_hal_SampleType
Represents the data type of raw measured data.

Functions

« int ilmsens_hal_measRdy (unsigned int xpDevNums, unsigned int pNum)

Reads the fill-level of the internal ring-buffer for all specified devices.
« int iimsens_hal_measRead (unsigned int xpDevNums, unsigned int pNum, ilmsens_hal_Sample-
Type «pBuffer, size_t pBufSizeBytes)
Reads the measurement data for all specified devices in non-blocking way.
« int ilmsens_hal_measGet (unsigned int xpDevNums, unsigned int pNum, ilmsens_hal_Sample-
Type «pBuffer, size_t pBufSizeBytes, unsigned int pTimeoutMillis)

Blocks and reads the measurement data for all specified devices when it becomes available.

6.10.1 Detailed Description

Functions to read measured data out of internal ring-buffer.

» There is a simple blocking interface implemented by ilimsens_hal_measGet().

+ Furthermode there is a non-blocking interface, implemented by iimsens_hal_measRdy() for polling
buffer-level of the ring-buffer(s) and iimsens_hal_measRead() for actually reading the next mea-
surement to the user application’s memory.

6.10.2 Function Documentation

6.10.2.1 intilmsens_hal_measRdy (unsigned int « pDevNums, unsigned int pNum)

Reads the fill-level of the internal ring-buffer for all specified devices.

This functions is not blocking and returns immediately. However, in raw mode, it will transfer data from a
device to the libraries’ ring-buffer on the host, if it discovers that a complete dataset is available.

Parameters

pDevNums | pointer to a first element or an array of device-indexes

pNum | number of array-elements

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

6.10 Raw measured data retrieval 25

Returns

minimum number of complete datasets available for all specified devices
0 if at least one device has no new data available
negative error-code

6.10.2.2 int ilmsens_hal_measRead (unsigned int « pDevNums, unsigned int pNum,
ilmsens_hal_SampleType * pBuffer, size_t pBufSizeBytes)

Reads the measurement data for all specified devices in non-blocking way.

This functions is not blocking and returns immediately with the next measurement data or an error-code
if no data are available.

Parameters

pDevNums | pointer to a first element or an array of device-indexes

pNum | number of array-elements

pBuffer | pointer to output buffer for measured data

pButSizeBytes | Size of buffer pointed to by pBuf fer in bytes

Returns

number of elements (samples) copied to the buffer
ILMSENS_ERROR_AGAIN if a completed dataset is not available for every device
negative error-code

See Also

Measurement Data Format
Calculating the output-buffer size

6.10.2.3 intilmsens_hal_measGet (unsigned int « pDevNums, unsigned int pNum, ilmsens_hal_SampleType
« pBuffer, size_t pBufSizeBytes, unsigned int pTimeoutMillis)

Blocks and reads the measurement data for all specified devices when it becomes available.

This functions blocks the caller until at least one complete measurement is available for every device or
a specified timeout expired. The buffer pBuffer must be large enough to hold one complete dataset
for each device, i.e. it must be able to hold at least pNum complete datasets.

Note: if pTimeoutMillis is 0, this function will block forever...

Parameters

pDevNums | pointer to a first element or an array of device-indexes

pNum | number of array-elements

pBuffer | pointer to output buffer for measured data

pBufSizeBytes | Size of buffer pointed to by pBuf fer in bytes

pTimeoutMillis | timeout [ms] (0 = forever)

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

26 CONTENTS

Returns

number of elements (samples) copied to the buffer
ILMSENS_ERROR_TIMEOUT when the timeout expired before enough data was received
negative error-code

See Also

Measurement Data Format
Calculating the output-buffer size

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

6.11 Low-level access to sensor registers & memory 27

6.11 Low-level access to sensor registers & memory

Typedefs

* typedef uint32_t ilmsens_hal_MemoryType
Represents data type for register and memory access.

Functions

+ int ilmsens_hal_readReg (unsigned int xpDevNums, unsigned int pNum, unsigned int pReg,
iimsens_hal_MemoryType «pVal, size_t pBufSizeBytes)

Reads value from register at pReg address from all specified devices to buffer.
« int ilmsens_hal_writeReg (unsigned int xpDevNums, unsigned int pNum, unsigned int pReg,
iimsens_hal_MemoryType pVal)

Writes pval value to register at pReg address to all specified devices.
+ int ilmsens_hal_readBIk (unsigned int xpDevNums, unsigned int pNum, unsigned int pAdr, un-
signed int pNumeEl, ilmsens_hal_MemoryType «pVal, size_t pBufSizeBytes)

Reads pNumE1 elements (32-bit words) starting at address pAdr from the internal memory of specified
devices into a buffer pval.

* int ilmsens_hal_writeBlk (unsigned int xpDevNums, unsigned int pNum, unsigned int pAdr, un-
signed int pNumEl, ilmsens_hal_MemoryType «pVal, size_t pBufSizeBytes)

Writes pNumE1 elements (32-bit words) from buffer pval to internal memory starting at address pAdr of
specified devices.

6.11.1 Detailed Description
6.11.2 Function Documentation

6.11.2.1 int ilmsens_hal_readReg (unsigned int x pDevNums, unsigned int pNum, unsigned int pReg,
ilmsens_hal_MemoryType « pVal, size_t pBufSizeBytes)

Reads value from register at preg address from all specified devices to buffer.

The buffer pval must be large enough to hold one word for each device, i.e. it must be at least pNum
words in size.

Parameters

pDevNums | pointer to a first element or an array of device-indexes

pNum | number of array-elements

PpReg | register address

pVal | pointer to buffer for register value(s)
pBufSizeBytes | Size of buffer pointed to by pval in bytes

Returns

number of words (elements) copied to the buffer
negative error-code

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

28 CONTENTS

6.11.2.2 int ilmsens_hal_writeReg (unsigned int « pDevNums, unsigned int pNum, unsigned int pReg,
ilmsens_hal_MemoryType pVal)

Writes pval value to register at preg address to all specified devices.

The same value is written to each device.

Parameters

pDevNums | pointer to a first element or an array of device-indexes

pNum | number of array-elements

PReg | register address

pVal | new register value

Returns

ILMSENS SUCCESS on success
negative error-code

6.11.2.3 intilmsens_hal_readBIk (unsigned int x pDevNums, unsigned int pNum, unsigned int pAdr, unsigned
int pNumEl, ilmsens_hal_MemoryType « pVal, size_t pBufSizeBytes)

Reads pNumE1 elements (32-bit words) starting at address pAdr from the internal memory of specified
devices into a buffer pval.

The buffer must be large enough to hold pNumE1 words for all specified devices, i.e. it provide space for
at least pNumE1 X pNum words.

Parameters

pDevNums | pointer to a first element or an array of device-indexes

pNum | number of array-elements

pAdr | word-aligned start memory address

pNumEl | number of words (elements) to read

pVal | pointer to buffer for the transferred memory content

pButSizeBytes | Size of buffer pointed to by pval in bytes

Returns

number of words (elements) copied to the buffer
negative error-code

6.11.2.4 intilmsens_hal_writeBlk (unsigned int x pDevNums, unsigned int pNum, unsigned int pAdr, unsigned
int pNumEl, ilmsens_hal_MemoryType « pVal, size_t pBufSizeBytes)

Writes pNumE1 elements (32-bit words) from buffer pval to internal memory starting at address pAdr
of specified devices.

The same content is written to each device, i.e. the buffer pval must hold pNumE1 words regardless of
pNum.

Parameters

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

6.11 Low-level access to sensor registers & memory

29

pDevNums

pointer to a first element or an array of device-indexes

pNum

number of array-elements

PAdr

word-aligned start memory address

pPNumEl

number of words (elements) to write

pVal

pointer to buffer with data to write

pBufSizeBytes

Size of buffer pointed to by pval in bytes

Returns

ILMSENS_SUCCESS on success
negative error-code

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

30 CONTENTS

7 Data Structure Documentation

7.1 ilmsens_hal_ModConfig Struct Reference

Represents the basic device configuration.

Data Fields

* unsigned int mOrder
MLBS order.
* unsigned int mSub
subsampling factor
double mClk
master clock
* unsigned int MmOV
number of oversampling
* unsigned int mTx

number of transmitters
* unsigned int mRx

number of receivers

7.1.1 Detailed Description

Represents the basic device configuration.

Hint: In case useless data is returned or memory access exceptions occur, make sure your compiler
does not use wrong memory alignement for structure members.

7.2 ilmsens_hal_Modinfo Struct Reference

Represents the device configuration & runtime parameters and limits.

Data Fields

* ilmsens_hal_ModConfig mConfig

basic configuration of sensor
» double mTB_Fc

corner frequency for timebase calibration
+ double mTemp

device temperature
 double mLSB_Volt

ADC LSB voltage (for calculating physical values out of raw data)
+ double mFSR [2]

ADC full scale range (minimum and maximum value)
* unsigned int mMHWAvg

number of hardware averages (FPGA)

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

7.3 ilmsens_hal_Version Struct Reference 31

unsigned int mAvg

number of averages
unsigned int mAvgLim [2]

limits for averages (minimum and maximum value)
* unsigned int mWait

number of wait cycles
* unsigned int mWaitLim [2]

limits for wait cycles (minimum and maximum value)
+ unsigned int mMNumSamp

number of samples per channel

7.2.1 Detailed Description

Represents the device configuration & runtime parameters and limits.

Hint: In case useless data is returned or memory access exceptions occur, make sure your compiler
does not use wrong memory alignement for structure members.

7.3 ilmsens_hal_Version Struct Reference

Represents the version identifier.

Data Fields

+ unsigned int mMajor

major version number
* unsigned int mMinor

minor version number
* unsigned int mBuild

build number

7.3.1 Detailed Description

Represents the version identifier.

Hint: In case useless data is returned or memory access exceptions occur, make sure your compiler
does not use wrong memory alignement for structure members.

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

32 CONTENTS

8 File Documentation

8.1 ilmsens_error.h File Reference

lImsens error code definitions.

Enumerations

» enum ilmsens_error {
ILMSENS_SUCCESS = 0, ILMSENS_ERROR_INVALID_PARAM = -1, ILMSENS_ERROR_STA-
TE =-2, ILMSENS_ERROR_BUSY = -3,
ILMSENS_ERROR_ACCESS = -4, ILMSENS_ERROR_IO = -5, ILMSENS_ERROR_NO_MEMO-
RY = -6, ILMSENS_ERROR_AGAIN = -7,
ILMSENS_ERROR_TIMEOUT = -8, ILMSENS_ERROR_NOT_SUPPORTED = -9, ILMSENS_E-
RROR_UNKNOWN = -99 }

Common error codes.

8.1.1 Detailed Description

lImsens error code definitions. The error codes defined in this file are used in various limsens APIs as
return values.

Author

Ralf Herrmann ralf.herrmann@ilmsens.com

8.2 ilmsens_hal.h File Reference

Function definitions for Imsens HAL API.

Functions

« intilmsens_hal_getVersion (struct iimsens_hal_Version xpVersion)

Return the HAL version.
« int ilmsens_hal_setDEBLevel (unsigned int pLevel)
Sets the verbosity of the diagnostics output Diagnostics are sent to std.
« intilmsens_hal_initHAL (void)
Initializes the library.
+ void ilmsens_hal_deinitHAL (void)
Deinitializes the library.
« intilmsens_hal_openSensors (unsigned int xpDevNums, unsigned int pNum)

Allocates specified devices for a measurement session.

+ void ilmsens_hal_closeSensors (unsigned int xpDevNums, unsigned int pNum)
Releases specified devices.

« int ilmsens_hal_getModlId (unsigned int pDevNum, char «pID, size_t pBufferSize)
Gets unique device-identifier.

« int ilmsens_hal_getModInfo (unsigned int pDevNum, struct ilmsens_hal_ModInfo xplInfo)

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

mailto:ralf.herrmann@ilmsens.com

8.2

ilmsens_hal.h File Reference 33

8.2.1

Gets device hardware-configuration.
int iimsens_hal_setupSensors (unsigned int xpDevNums, unsigned int pNum, const struct iimsens-
_hal_ModConfig *pConfig)

Performs the initial setup of specified devices.
int iimsens_hal_setMaster (unsigned int xpDevNums, unsigned int pNum, int pMode)

Sets master/slave operational mode.
int ilmsens_hal_setAvg (unsigned int xpDevNums, unsigned int pNum, unsigned int pAvg, un-
signed int pWaitCyc)

Sets software averages and wait cycles.
int iimsens_hal_setMLBS (unsigned int xpDevNums, unsigned int pNum)

Resets the M-sequence generator (transmitter) of each device.
int ilmsens_hal_setPD (unsigned int xpDevNums, unsigned int pNum, int pPD)

Controls the power-status of the transmitter.
int ilmsens_hal_synchMS (unsigned int xpDevNums, unsigned int pNum, int pMode)

Performs digital synchronisation.
int iimsens_hal_measRun (unsigned int xpDevNums, unsigned int pNum, int pMode)

Starts a measurement run with specified devices.
int ilimsens_hal_measStop (unsigned int xpDevNums, unsigned int pNum)

Stops running measurement.
int iimsens_hal_measRdy (unsigned int xpDevNums, unsigned int pNum)

Reads the fill-level of the internal ring-buffer for all specified devices.
int iimsens_hal_measRead (unsigned int xpDevNums, unsigned int pNum, ilmsens_hal_Sample-
Type xpBuffer, size_t pBufSizeBytes)

Reads the measurement data for all specified devices in non-blocking way.
int ilmsens_hal_measGet (unsigned int xpDevNums, unsigned int pNum, ilmsens_hal_Sample-
Type «pBuffer, size_t pBufSizeBytes, unsigned int pTimeoutMillis)

Blocks and reads the measurement data for all specified devices when it becomes available.
int ilmsens_hal _readReg (unsigned int xpDevNums, unsigned int pNum, unsigned int pReg,
iimsens_hal_MemoryType xpVal, size_t pBufSizeBytes)

Reads value from register at preg address from all specified devices to buffer.
int ilmsens_hal_writeReg (unsigned int xpDevNums, unsigned int pNum, unsigned int pReg,
iimsens_hal_MemoryType pVal)

Writes pval value to register at preg address to all specified devices.
int ilmsens_hal_readBlk (unsigned int xpDevNums, unsigned int pNum, unsigned int pAdr, un-
signed int pNumEl, iimsens_hal_MemoryType xpVal, size_t pBufSizeBytes)

Reads pNnumE1 elements (32-bit words) starting at address pAdr from the internal memory of specified

devices into a buffer pval.
int ilmsens_hal_writeBlk (unsigned int xpDevNums, unsigned int pNum, unsigned int pAdr, un-
signed int pNumEl, ilmsens_hal_MemoryType «pVal, size_t pBufSizeBytes)

Writes pNumE1 elements (32-bit words) from buffer pval to internal memory starting at address pAdr of
specified devices.

Detailed Description

Function definitions for llmsens HAL API. This header contains prototypes for the exported functions of
the HAL library.

Author

Ralf Herrmann ralf.herrmann@ilmsens.com

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

mailto:ralf.herrmann@ilmsens.com

8.3

34 CONTENTS

ilmsens_hal_defn.h File Reference

Macro definitions for Imsens HAL.

Macros

8.3.1

#define ILMSENS_HAL_RUN_OFF 0

sensor is currently not measuring
#define ILMSENS_HAL_RUN_RAW 1

sensor is measuring and data is not buffered by API
#define ILMSENS_HAL_RUN_BUF 2

sensor is measuring and data is buffered by APl in separate thread
#define ILMSENS HAL MOD_ID BUF SIZE 1024

maximum length buffer size for retrieving the unique ID string.
#define ILMSENS_HAL_SLAVE_SENSOR 0

setup the sensor(s) to be slave devices
#define ILMSENS HAL MASTER_SENSOR 1

setup the sensor(s) to be master devices
#define ILMSENS_HAL SYNCH_OFF 0

retract digital synchronisation, i.e. sensors will be unsynch’ed
#define ILMSENS_HAL_SYNCH_ON 1

perform digital synchronisation, i.e. sensors will be synch’ed
#define ILMSENS_HAL_TX_OFF 1

transmitter is in power down mode, i.e. output amplifier is switch off

#define ILMSENS_HAL_TX_ON 0

transmitter is working, i.e. output amplifier is switched on
#define ILMSENS DEB NO 0U

do not output debug/info messages
#define ILMSENS DEB INFO 1U

only output errors and very important information
#define ILMSENS_DEB_MORE 2U

output errors, warnings, and important information
#define ILMSENS_DEB_MOST 3U

output errors, warnings, and debug information
#define ILMSENS _DEB ALL 4U

output errors, warnings, and trace information

Detailed Description

Macro definitions for llmsens HAL. This header contains definitions for various values used in different
HAL functions.

Author

8.4

Ralf Herrmann ralf.herrmann@ilmsens.com

ilmsens_hal_types.h File Reference

Type definitions for lImsens HAL.

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

mailto:ralf.herrmann@ilmsens.com

8.5 ilmsens_hal_version.h File Reference 35

Data Structures

« struct ilmsens_hal Version

Represents the version identifier.
« struct ilmsens_hal_ModConfig

Represents the basic device configuration.
« struct ilmsens_hal_ModInfo

Represents the device configuration & runtime parameters and limits.

Typedefs

* typedef int32_t iimsens_hal_SampleType

Represents the data type of raw measured data.
* typedef uint32_t ilmsens_hal_MemoryType

Represents data type for register and memory access.

8.4.1 Detailed Description

Type definitions for lImsens HAL. This header defines structure types used by the various setup and
information retrieval HAL functions. Furthermore, it defines the data types for measured samples and
register/memory access.

Author

Ralf Herrmann ralf.herrmann@ilmsens.com

8.5 ilmsens_hal version.h File Reference

Version definitions.

Macros

+ #define ILMSENS_HAL_API_VER_MAJOR 1

major version number of HAL AP/
* #define ILMSENS_ HAL APl _VER_MINOR 1

minor version number of HAL API
« #define ILMSENS HAL_API_VER_BUILD 1

build number of HAL API
+ #define ILMSENS_HAL_API_VER (ILMSENS_HAL_API_VER_MAJOR % 100000 + ILMSENS_H-
AL_API_VER_MINOR % 1000 + ILMSENS_HAL_API_VER_BUILD)

single version number for preprocessors

8.5.1 Detailed Description

Version definitions.

Author

Ralf Herrmann ralf.herrmann@ilmsens.com

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

mailto:ralf.herrmann@ilmsens.com
mailto:ralf.herrmann@ilmsens.com

Index

Device configuration, 17
ilmsens_hal_setMaster, 18
ilmsens_hal_setupSensors, 17

Device handling, 14
ilmsens_hal_closeSensors, 14
ilmsens_hal_openSensors, 14

Device ID & properties, 15
iimsens_hal_getModld, 15
ilmsens_hal_getModinfo, 15

Diagnostic interface, 13
ilmsens_hal_setDEBLevel, 13

ILMSENS ERROR _ ACCESS
limsens Error Codes, 10
ILMSENS ERROR_AGAIN
limsens Error Codes, 10
ILMSENS ERROR_BUSY
limsens Error Codes, 10
ILMSENS_ERROR_INVALID _PARAM
limsens Error Codes, 10
ILMSENS ERROR_IO
limsens Error Codes, 10
ILMSENS ERROR_NO_ MEMORY
limsens Error Codes, 10
ILMSENS ERROR_NOT_SUPPORTED
llImsens Error Codes, 10
ILMSENS ERROR_STATE
llmsens Error Codes, 10
ILMSENS ERROR TIMEOUT
limsens Error Codes, 10
ILMSENS ERROR_UNKNOWN
limsens Error Codes, 10
ILMSENS SUCCESS
limsens Error Codes, 10
limsens Error Codes, 10
ILMSENS ERROR_ACCESS, 10
ILMSENS ERROR_AGAIN, 10
ILMSENS ERROR BUSY, 10
ILMSENS ERROR_INVALID PARAM, 10
ILMSENS ERROR 10O, 10
ILMSENS ERROR_NO_ MEMORY, 10
ILMSENS ERROR_NOT_SUPPORTED, 10
ILMSENS ERROR _STATE, 10
ILMSENS ERROR_TIMEOUT, 10
ILMSENS ERROR_UNKNOWN, 10
ILMSENS SUCCESS, 10
ilmsens_error, 10
ilmsens_error
limsens Error Codes, 10
ilmsens_error.h, 32
iimsens_hal.h, 32
ilmsens_hal_ModConfig, 30
iimsens_hal_Modinfo, 30
ilmsens_hal_Version, 31

iimsens_hal_closeSensors
Device handling, 14
iimsens_hal _defn.h, 34
iimsens_hal_deinitHAL
Library initialization/deinitialization, 11
ilmsens_hal_getModld
Device ID & properties, 15
iimsens_hal_getModInfo
Device ID & properties, 15
iimsens_hal_getVersion
Library version and revision, 12
ilmsens_hal_initHAL
Library initialization/deinitialization, 11
iimsens_hal _measGet
Raw measured data retrieval, 25
iimsens_hal_measRdy
Raw measured data retrieval, 24
ilmsens_hal_measRead
Raw measured data retrieval, 25
iimsens_hal_measRun
Measurement run, 22
iimsens_hal_measStop
Measurement run, 23
iimsens_hal_openSensors
Device handling, 14
iimsens_hal_readBlk
Low-level access to sensor registers & mem-
ory, 28
iimsens_hal_readReg
Low-level access to sensor registers & mem-
ory, 27
iimsens_hal_setAvg
Measurement configuration, 19
iimsens_hal_setDEBLevel
Diagnostic interface, 13
iimsens_hal_setMLBS
Measurement configuration, 20
ilmsens_hal_setMaster
Device configuration, 18
iimsens_hal_setPD
Measurement configuration, 20
iimsens_hal_setupSensors
Device configuration, 17
iimsens_hal_synchMS
Measurement configuration, 20
iimsens_hal_types.h, 34
ilmsens_hal_version.h, 35
ilmsens_hal_writeBlk
Low-level access to sensor registers & mem-
ory, 28
ilmsens_hal_writeReg
Low-level access to sensor registers & mem-
ory, 27

Library initialization/deinitialization, 11

INDEX 37

ilmsens_hal_deinitHAL, 11
ilmsens_hal_initHAL, 11

Library version and revision, 12
iimsens_hal_getVersion, 12

Low-level access to sensor registers & memory, 27
ilmsens_hal_readBlk, 28
ilmsens_hal_readReg, 27
ilmsens_hal_writeBlk, 28
iimsens_hal_writeReg, 27

Measurement configuration, 19
iimsens_hal_setAvg, 19
ilmsens_hal_setMLBS, 20
ilmsens_hal setPD, 20
ilmsens_hal_synchMS, 20

Measurement run, 22
ilmsens_hal_measRun, 22
iimsens_hal_measStop, 23

Raw measured data retrieval, 24
ilmsens_hal_measGet, 25
iimsens_hal_measRdy, 24
ilmsens_hal _measRead, 25

Generated on Sun Sep 3 2017 00:30:13 for limsens HAL API by Doxygen

	1 Function Reference Manual - HAL API
	1.1 Introduction
	1.2 Copyright and Disclaimer
	1.3 Further documentation
	1.4 Third party software
	1.5 Third party tools
	1.6 Contact Ilmsens

	2 Measurement Data Format
	2.1 Data format of raw measured data
	2.2 Calculating the output-buffer size
	2.3 Layout example of output buffer

	3 Module Index
	3.1 Modules

	4 Data Structure Index
	4.1 Data Structures

	5 File Index
	5.1 File List

	6 Module Documentation
	6.1 Ilmsens Error Codes
	6.2 Library initialization/deinitialization
	6.3 Library version and revision
	6.4 Diagnostic interface
	6.5 Device handling
	6.6 Device ID & properties
	6.7 Device configuration
	6.8 Measurement configuration
	6.9 Measurement run
	6.10 Raw measured data retrieval
	6.11 Low-level access to sensor registers & memory

	7 Data Structure Documentation
	7.1 ilmsens_hal_ModConfig Struct Reference
	7.2 ilmsens_hal_ModInfo Struct Reference
	7.3 ilmsens_hal_Version Struct Reference

	8 File Documentation
	8.1 ilmsens_error.h File Reference
	8.2 ilmsens_hal.h File Reference
	8.3 ilmsens_hal_defn.h File Reference
	8.4 ilmsens_hal_types.h File Reference
	8.5 ilmsens_hal_version.h File Reference

